le 18 juin 2024
Publié le 12 mai 2025 Mis à jour le 12 mai 2025

Séminaire Igor ARONSON

seminaire
seminaire

Confined bacterial suspensions

Mardi 18/06 2024, 14h00, salle E4.13b

Igor ARONSON

Active Biomaterials Lab, Penn State

Confined bacterial suspensions

Previous experiments have shown [1,2] that the complex spatiotemporal vortex structures emerging in motile bacterial suspensions are susceptible to weak geometrical constraints. By a combination of continuum theory and experiments, we have shown how artificial obstacles guide the flow profile and reorganize topological defects, which enables the design of bacterial vortex lattices with tunable properties. In more recent studies, we observed the emergence of spatiotemporal chaos in a bacterial suspension confined in a cylindrical well. As the well radius increases, we observed a bifurcation sequence from a steady-state vortex to periodically reversing vortices, four pulsating vortices, and, finally, to spatiotemporal chaos (active turbulence). The results of experiments are rationalized by the analysis of the continuum model for bacterial suspensions based on the complex Swift-Hohenberg equations. Furthermore, the bifurcation sequence is explained by reduction to amplitude equations for the three lowest azimuthal modes. Equations of motion are then reconstructed from experimental data.  The results indicate that the vortex reversal precedes the onset of spatiotemporal chaos in confined active systems.

Lien teams: https://teams.microsoft.com/l/meetup-join/19%3aac3d3339d1c740e0a3b81b94e49808c1%40thread.tacv2/1698658652943?context=%7b%22Tid%22%3a%22b8c19512-2aed-471d-a8d1-9b06e7da786a%22%2c%22Oid%22%3a%222ea0eb78-4abd-439c-8240-cc89774321a2%22%7d